
1© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Design Patterns
Part II

Bernd Bruegge
 Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering
Lecture 14

2© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Outline of the Lecture

• Short review of the concepts from the previous
lecture

• What is a design pattern?
• Modifiable designs

More patterns:
• Proxy: Provide Location transparency
• Command: Encapsulate control flow
• Observer: Provide publisher/subscribe mechanism
• Strategy: Support family of algorithms, separate of

policy and mechanism
• Template Pattern: Support the structure of an

algorithm, with steps to be filled in
• Abstract Factory: Provide manufacturer independence
• Builder: Hide a complex creation process.

3© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Schedule for Final Exam

• Saturday 17 February 2007

• Time: 10-12:30

4© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Winner of Yesterday’s Competition

• 3. Prize:
• Atanas Gregov

• 2. Prize:
• Vladislav Lazarov

• 1. Prize:
• Lejing Wang, Eduardo Aguilar, Irena Kostadinovic,

Carla Guilen

5© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Review: Design pattern

A design pattern is…

…a template for a solution to a recurring design
problem

• You can search a library of existing design knowledge
before re-inventing the wheel

…reusable design knowledge
• You can learn design by studying existing designs

…an example of modifiable design
• You can extend and customize an existing design.

6© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Definitions

• Extensibility (Expandibility)
• A system is extensible, if new functional requirements

can easily be added to the existing system

• Customizability
• A system is customizable, if new nonfunctional

requirements can be addressed in the existing system

• Scalability
• A system is scalable, if existing components can easily

be multiplied in the system

• Reusability
• A system is reusable, if it can be used by another

system without requiring major changes in the existing
system model (design reuse) or code base (code
reuse).

7© 2007 Bernd Bruegge Software Engineering WS 2006/2007

What makes a Design reusable?

• Low coupling between subsystems and high
cohesion within subsystems

• Clear dependencies
• Explicit assumptions

How do design patterns help?
• They are generalizations from existing designs
• They provide a shared vocabulary to designers
• They provide examples of reusable designs

• Inheritance (abstract classes)
• Delegation (or aggregation)

8© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Why are reusable Designs important?

A reusable design…
…enables an iterative and incremental

development cycle
• concurrent development
• risk management
• flexibility to change

…minimizes the introduction of new problems
when fixing old ones

…allows the delivery of more functionality after an
initial delivery (Extensibility).

9© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Categorization of Patterns

• Structural Patterns
• reduce coupling between two or more classes
• introduce an abstract class to enable future extensions
• encapsulate complex structures

• Behavioral Patterns
• allow a choice between algorithms and the assignment

of responsibilies to objects (“Who does what?”)
• characterize complex control flows that are difficult to

follow at runtime

• Creational Patterns
• allow to abstract from complex instantiation processes
• make the system independent from the way its objects

are created, composed and represented.

10© 2007 Bernd Bruegge Software Engineering WS 2006/2007

11© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Lecture Plan for Today

• Structural patterns
• Proxy

• Behavioral patterns
• Command
• Observer
• Strategy
• Template

• Creational patterns
• Abstract Factory
• Builder

12© 2007 Bernd Bruegge Software Engineering WS 2006/2007

13© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Proxy Pattern: Motivation

• I am sitting at my 768Kb DSL modem
connection and try to retrieve a page during a
busy time.

• I am getting 10 bits/sec.
• What can I do?

14© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Proxy Pattern

• Design Problem: What is particularly expensive
in object-oriented systems?

• Object creation
• Object initialization

• Solution:
• Defer object creation and object initialization to the

time you need the object

• Proxy pattern:
• Reduces the cost of accessing objects
• Uses another object (“the proxy”) that acts as a stand-

in for the real object
• The proxy creates the real object only if the user asks

for it.

15© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Proxy pattern

• Interface inheritance is used to specify the
interface shared by Proxy and RealSubject

• Delegation is used by Proxy to forward any
accesses to the RealSubject (if desired).

Subject

Request()

RealSubject

Request()

Proxy

Request()

16© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Proxy Applicability

• Remote Proxy:
• The Proxy object is a local representative for an object in

a different address space (Caching of information)
• Good if information does not change too often

• Virtual Proxy:
• Object is too expensive to create or too expensive to

download. The Proxy object is a standin
• Good if the real object is rarely accessed

• Protection Proxy:
• The Proxy object provides access control to the real

object
• Good when different objects should have different access

and viewing rights for the same document
• Example: Grade information accessed by

administrators, teachers and students.

17© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Virtual Proxy Example

• The RealImage is stored and loaded separately
• If the RealImage is not loaded, a ProxyImage draws a

grey rectangle in place of the image
• The class user of Image cannot tell, if it is dealing with

ProxyImage instead of RealImage
• A proxy pattern can be easily combined with a Bridge.

Image
boundingBox()

draw()

realSubject RealImage
boundingBox()

draw()

ProxyImage
boundingBox()

draw()

18© 2007 Bernd Bruegge Software Engineering WS 2006/2007

√

19© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Command Pattern: Motivation

• You want to build a user interface
• You want to provide menus
• You want to make the menus reusable across

many applications
• The applications only know what has to be done when

a command from the menu is selected
• You don’t want to hardcode the menu commands for

the various applications

• Such a user interface can easily be implemented
with the Command Pattern.

Command pattern

• Client (usually a user interface builder) creates a Concrete-
Command and binds it to an action operation in Receiver

• Client hands the ConcreteCommand over to the Invoker which
stores it (for example in a menu)

• The Invoker has the responsibility to execute() the command
(based on a string entered by the user).

Command

execute()

Receiver

action1()
action2()

Client

Invoker

ConcreteCommand1

execute()

«binds»

ConcreteCommand2

execute()

«binds»

21© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Comments to the Command Pattern
• The abstract class Command declares the interface

supported by all ConcreteCommands
• The Client is a class in a user interface builder or in a

class executed during startup of the application to
build the user interface

• The client creates subclasses of Command,
ConcreteCommands, and binds them to specific
Receivers of type string. These strings are entered by
the user (Examples: “commit”, “execute”, “undo”)

• All user-visible commands are subclasses of Command

• The Invoker class - in the application program
offering a menu of commands - selects the
ConcreteCommand based on the string and the
binding between action() and ConcreteCommand.

22© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Advantages of the Command Pattern

• The command pattern can be nicely used to
decouple boundary objects from control objects:

• Examples of boundary objects:
• menu items, buttons,

• Only the boundary objects can create and send
messages to objects of type Command

• Only objects of type Command can modify
entity objects

• When the user interface is changed (for
example, a menu bar is replaced by a tool bar),
only the boundary objects have to be modified.

23© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Command Pattern Applicability

• Parameterize clients with different requests
• Queue or log requests
• Support undoable operations

• Uses:
• Undo queues
• Database transaction buffering

24© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applying the Command Pattern to
Command Sets

GameBoard

«binds»
TicTacToeMove

execute()

ChessMove

execute()

Move

execute()

Match *

replay()
play()

25© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applying the Command design pattern to
Replay Matches in ARENA

replay()

«binds»

play()

TicTacToeMove

ChessMove

Move

execute()

Match *

GameBoard

nextMove()

ReplayedMatch

previousMove()

26© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Observer Pattern Motivation

• Models a 1-to-many dependency between
objects

• When one object changes state, all its dependents are
notified and updated automatically.

• Also called Publish and Subscribe

• Uses:
• Maintaining consistency across redundant state
• Optimizing batch changes to maintain consistency

27© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Miscellaneous

• Mid-Term
• Quiz-based exams out today

• Published on lecture portal if you agreed to the
internet-based publication of your grade

• Otherwise posted in the glass box in front of Max
Koegel’s office

• Project-based exams out on Thursday

• Next exercise session still in multimedia room 2
• Space still a constraint, but get to know each other:-)

• Interesting events
• CDTM: Thursday 19:00, room 2502 in TUM,

Arcisstrasse.
• Look at www.cdtm.de
• A few more details in tomorrow’s lecture

28© 2007 Bernd Bruegge Software Engineering WS 2006/2007

3 Views of the File Name for a Presentation

InfoView

Powerpoint
View

List View

3 Possibilities to really change the File name

What happens
if I change

the file name of this presentation
to foo?

29© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Observer Pattern: Decoupling Entities from Views

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

The Subject (“Publisher”) represents the actual state, each Observer
(“Subscriber”) represents a different view of the state.

Observer

update()

*observers

ConcretePublisher
state

getState()
setState()

ConcreteSubscriber
observeState

update()

Application Domain

Solution Domain

Modeling the scenario:
Change FileName to “foo”

getName()

FileName

display()

“foo”

update()
update()

PowerpointView

getState()

subscribe()

setState(“foo”)

subscribe()

ListViewInfoView

“Patterns.ppt”

notify()

getName()
“foo”

 update()

Does our sequence diagram
model the reality?

subscribe()

31© 2007 Bernd Bruegge Software Engineering WS 2006/2007

InfoView
update()

Observer
update()

*Subject
subscribe()
unsubscribe()
notify()

getState()
setState()

File
-filename

ListView
update()

PowerpointView
update()

Applying the Observer Pattern to maintain
Consistency across Views

32© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applying the Observer Design Pattern to
maintain Consistency across MatchViews

GameBoard

state
getState()
playMove()

Observer

update()

MatchView

gameBoard
update()

observers

*1
Subject

subscribe(Subscriber)
unsubscribe(Subscriber)
notify()

33© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applying the Observer Design Pattern to
maintain Consistency across MatchViews

GameBoard

state
getState()
playMove()

Observer

update()

MatchView

gameBoard
update()

observers

*1
Subject

subscribe(Subscriber)
unsubscribe(Subscriber)
notify()

34© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Motivation for the Strategy Pattern

• Different algorithms exists for a specific task
• Examples of tasks:

• Parsing a set of tokens into an abstract syntax tree
(Bottom up, top down)

• Sorting a list of customers (Bubble sort, mergesort,
quicksort)

• The different algorithms will be appropriate at
different times

• Rapid prototyping vs delivery of final product

• We don’t want to support all the algorithms if we
don’t need them

• If we need a new algorithm, we want to add it
easily without disturbing the application using
other algorithms.

35© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Strategy Pattern

Context

ContextInterface()
Strategy

AlgorithmInterface

*

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current
Context.

Policy

36© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applicability of Strategy Pattern

• Many related classes differ only in their behavior

• Different variants of an algorithm are needed
that trade-off space against time

• A specific implementation needs to be selected
based on the current context.

37© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Using a Strategy Pattern to Decide
between Algorithms at Runtime

 Database

SelectSortAlgorithm()
Sort()

* SortInterface

Sort()

 Time_Efficient_Sort

Sort()

Memory_Efficient_Sort

Sort()

 Policy
TimeIsImportant
SpaceIsImportant

Called by Policy:
Selects the subclass

38© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Supporting Multiple implementations of a
Network Interface

NetworkInterface

open()
close()
send()
receive()

NetworkConnection

send()
receive()
setNetworkInterface()

Application

WaveLAN

open()
close()
send()
receive()

Ethernet

open()
close()
send()
receive()

LocationManager

UMTS

open()
close()
send()
receive()

Called at Runtime by
LocationManager:
Selects the subclass

39© 2007 Bernd Bruegge Software Engineering WS 2006/2007

√

√

√

√

40© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Template Method Motivation

• Several subclasses share the same algorithm
but differ in some aspects

• Examples:
• Opening documents of different types consists

of the same sequence of operations with
different realizations

• open; {read|write}*; close;
• Executing a set of different test cases

• startup; run_test; finish_test

• Approach
• The common steps of the algorithm are factored out

into an abstract class
• Abstract methods are defined for each step
• Subclasses provide the different realizations for

each of the steps.

step1();
…

step2();
…

step3();

41© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Template Method

AbstractClass

templateMethod()
step1()
step2()
step3()

ConcreteClass

step1()
step2()
step3()

step1();
…

step2();
…

step3();

 ConcreteClass provides
the implementation for

 each step.

The abstract class
defines 3 steps

42© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Template Method Example: Test Cases

setUp();
try {
 runTest();
} catch (Exception e){
 recordFailure(e);
}
tearDown();

TestCase

run()
setUp()
runTest()
tearDown()

MyListTestCase

setUp()
runTest()
tearDown()

43© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Template Method Example:
Opening Documents

Application

openDocument()
canOpenFile(f:File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

MyApplication

canOpenFile(File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

if (canOpenFile(f)) {
 Doc d;
 d = createDocument(f);
 aboutToOpenDocument(d);
 d.open();
}

44© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Template Method Pattern Applicability

• Template method pattern uses inheritance to
vary part of an algorithm

• Strategy pattern uses delegation to vary the
entire algorithm

• Template Method is used in frameworks
• The framework implements the invariants of the

algorithm
• The client customizations provide specialized steps for

the algorithm

• Principle: “Don’t call us, we’ll call you”

45© 2007 Bernd Bruegge Software Engineering WS 2006/2007

√ √

46© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Abstract Factory Pattern Motivation

• Consider a user interface toolkit that supports
multiple looks and feel standards for different
operating systems:

• How can you write a single user interface and make it
portable across the different look and feel standards
for these window managers?

• Consider a facility management system for an
intelligent house that supports different control
systems:

• How can you write a single control system that is
independent from the manufacturer?

47© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Abstract Factory

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

AbstractFactory

CreateProductA
CreateProductB

Client

CreateProductA
CreateProductB

ConcreteFactory1

CreateProductA
CreateProductB

ConcreteFactory2

48© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Example: A Facility Management System for a
House

LightBulb

EIBBulb LuxmateBulb

Blind

EIBBlind LuxmateBlind

HouseFactoryIntelligentHouse

createBulb()
createBlind()

LuxmateFactoryEIBFactory

createBulb()
createBlind()

createBulb()
createBlind()

49© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applying the Abstract Factory Pattern to
Games

Game

Match

TTTMatch ChessMatch

ChessTicTacToe

createMatch()
createStats()

Statistics

TTTStats ChessStats

Tournament

createMatch()
createStatistics()

createMatch()
createStats()

50© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applicability for Abstract Factory Pattern

• Independence from Initialization or
Representation

• Manufacturer Independence
• Constraints on related products
• Cope with upcoming change

51© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Builder Pattern Motivation

• The construction of a complex object is common
across several representations

• Example
• Converting a document to a number of different formats

• the steps for writing out a document are the same
• the specifics of each step depend on the format

• Approach
• The construction algorithm is specified by a single class

(the “director”)
• The abstract steps of the algorithm (one for each part)

are specified by an interface (the “builder”)
• Each representation provides a concrete implementation

of the interface (the “concrete builders”)

52© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Builder Pattern

Construct()
Director

For all objects in Structure {
 Builder->BuildPart()
}

BuildPart()
 Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilderA

Represen-
tation A

53© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Applicability of Builder Pattern

• The creation of a complex product must be
independent of the particular parts that make up
the product

• The creation process must allow different
representations for the object that is
constructed.

Example: Converting an RTF Document into
different representations

Parse()
RTFReader

while (t = GetNextToken()) {
switch t.Type {
 CHAR: Builder->ConvertCharacter(t)
 FONT: Builder->ConvertFontChange(t)
 PARA: Builder->ConvertParagraph(t) }
}

AsciiText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

 Builder

TeXText HTMLText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetASCIIText()

AsciiConverter
ConvertCharacter()

ConvertFontChange()
ConvertParagraph()

GetTeXText()

TexConverter
ConvertCharacter()

ConvertFontChange()
ConvertParagraph()

GetHTMLText()

HTMLConverter

55© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Comparison: Abstract Factory vs Builder

• Abstract Factory
• Focuses on product family
• Does not hide the creation process

• Builder
• The underlying product needs to be constructed as part

of the system, but the creation is very complex
• The construction of the complex product changes from

time to time
• Hides the creation process from the user

• Abstract Factory and Builder work well together
for a family of multiple complex products

56© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Clues in Nonfunctional Requirements for
the Use of Design Patterns

• Text: “manufacturer independent”,
 “device independent”,

 “must support a family of products”
=> Abstract Factory Pattern

• Text: “must interface with an existing object”
=> Adapter Pattern

• Text: “must interface to several systems, some
 of them to be developed in the future”,

“ an early prototype must be demonstrated”
=>Bridge Pattern

• Text: “must interface to existing set of objects”
=> Façade Pattern

57© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Clues in Nonfunctional Requirements for use
of Design Patterns (2)

• Text: “complex structure”,
 “must have variable depth and width”

=> Composite Pattern
• Text: “must be location transparent”

=> Proxy Pattern
• Text: “must be extensible”,

 “must be scalable”
=> Observer Pattern

• Text: “must provide a policy independent from
 the mechanism”
=> Strategy Pattern

58© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Summary

• Composite, Adapter, Bridge, Façade, Proxy
(Structural Patterns)

• Focus: Composing objects to form larger structures
• Realize new functionality from old functionality,
• Provide flexibility and extensibility

• Command, Observer, Strategy, Template
(Behavioral Patterns)

• Focus: Algorithms and assignment of responsibilities to
objects

• Avoid tight coupling to a particular solution

• Abstract Factory, Builder (Creational Patterns)
• Focus: Creation of complex objects

• Hide how complex objects are created and put
together

59© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Conclusion

• Design patterns
• Provide solutions to common problems.
• Lead to extensible models and code.
• Can be used as is or as examples of interface

inheritance and delegation.
• Apply the same principles to structure and to behavior.

• Design patterns solve all your software
engineering problems

• My favorites: Composite, Strategy, Builder and
Observer

